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Preface

This thesis is a continuation of work previously done at the Air

Force Institute of Technology using Monte Carlo sampling techniques to

conduct sequential probability ratio tests of the Weibull density

function. It is hoped that this thesis will provide more accurate and

dependable test plans of reliability when the underlying distribution

is a two-parameter Weibull.

I would like to thank my advisor, Dr. Albert H. Moore, for both

suggesting my topic, and providing guidance as the work progressed.
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Abstract

Monte Carlo Analysis techniques are used for the development of

test plans concerning hypothesized system reliabilities. Systems under

consideration are those in which component failure rates are best

described by the two-parameter Weibull probability density function.

The statistical test employed is Wald's sequential probability ratio

test using independent, asymptotically computed variances (Cramer-Rao

Lower Bound Technique). The null hypothesis, HO: R = .90, is tested

against alternative reliabilities of .854, .810, and .729. Three pairs

of alpha and beta risk levels are considered for each test ((.l,.l),

(.2,.2), (.l,.2)). A truncation decision for the sequential test is

made at 1.5 times the fixed sample test size for the same conditions.

One thousand Monte Carlo repetitions are used for these test procedures.

vi



Sequential Testing of Hypotheses Concerning
the Reliability of a System Modeled by a

Two-Parameter Weibull Distribution

I. Introduction

The importance of reliability testing is reflected in the constantly

increasing emphasis placed on this subject by both government and com-

mercial industry. Most Department of Defense contracts impose some

degree of reliability requirements on the contractor. These range from

the definition of system reliability goals to the requirement for actual

) demonstration of achievement. Many of these have specific funds allo-

cated to the reliability effort. Some also require the development and

maintenance of a reliability program plan, and specify the preparation

of periodic reliability reports. Statistical testing, and in particular

Monte Carlo sampling techniques, have proven quite useful when testing

and evaluating the reliability of a system.

r iPurpose

The purpose of this thesis is to develop truncated (truncation

occurs at 1.5 times the fixed sample test size) sequential test plans,

concerning hypothesized system reliabilities. Testing applies to those

systems that can be modeled by the two-parameter Weibull probability

distribution. The test used is Wald's Sequential Probability Ratio

Test (SPRT). Wald states that the SPRT "frequently results in a savings

of about 50 percent in the number of observations over the most efficient



test procedure based on a fixed number of observations" (Ref 28:1).

The null hypothesis, H0 :R = .90, will be tested against alternative

reliabilities of .854, .810, and .729. Three sets of a and B risk

levels will be used as input: (.2,.2), (.l,.l), and (.l,.2).

Verification

Actual alpha errors will be evaluated by inputting H0 true, while

actual beta errors can be determined by inputting H1 true. Verification

of these test plans will include evaluation of these Type I and Type II

errors using Monte Carlo simulation. Previous work at the Air Force

Institute of Technology (Ackerson 1977, Ballard 1978, Antoon 1979) have

shown Monte Carlo techniques quite useful in Weibull testing.

The test statistic employed for the sequential tests will be a

modification of the one used by Ballard in his 1978 thesis work. The

statistic is based on a liklihood ratio of the hypothesized reliabili-

ties, R0  and R .
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II. Background

The Weibull Distribution

In the late 1930's, the subject of fatigue life in materials and

the related subject of extreme value theory were being studied by

Weibull (Ref 30), Gumbel (Ref 8), and Epstein (Ref 6) among others. In

1939 Waloddi Weibull, a professor at the Royal Institute of Technology

- in Sweden, proposed the distribution named after him as an appropriate

distribution to describe the life length of materials. In 1951, while

working for the A.B. Bofors Steel Company in Stockholm, Sweden, Weibull

demonstrated that this function could be used to model such things as;

yield strength of Bofors steel, size distribution of fly ash, fiber

strength of Indian cotton, length of Cytroidae, fatigue life of steel,

statures for adult males born in the British Isles, and breadth of beans

of Phaseolus Vulgaris (Ref 29).

Of interest to the Air Force, is the fact that the Weibull density

function can be used to model aircraft subsystem life, the failure and

fatigue life of metals, the life of many electrical components, as well

as many other items currently in Air Force inventories. The probability

density function for the three-parameter Weibull is given by:

k-l kf(x;e,k,c) = k(x-c)k -  exp [-((x-c)/e) x>o (1)

k ,k>o

= o elsewhere

3



The three parameters are:

k-the shape parameter

e-the scale parameter

c-the location parameter

The shape parameter, k, determines the shape or amount of peak to

the curve. This parameter allows the failure rates to decrease, in-

crease, or remain constant over time. In reliability testing, k is

considered a function of mean ultimate strength (Ref 9:32) (note that

for k equal to one the distribution becomes exponential).

The scale parameter, e, is sometimes referred to as the charac-

teristic life of the component being tested, and determines the spread

of the function about it's mean. In reliability testing, e is con-

sidered a function of stress (Ref 9:32).

The location parameter, c, is the value of x at which failures

begin to occur. In this thesis c will be zero, reducing the three-

parameter Weibull distribution to two parameters. This indicates that

failures can occur immediately after initiation of an operation or

function. The two-parameter Weibull distribution has the following

characteristics:

1. Probability density function (p.d.f.):

- f(x;o,k) = k(x) k'l exp [-(x/e) k] x>o (2)
8k

a, k>o

= 0 elsewhere

4
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2. Cumulative distribution function (c.d.f.):

F(x) z 1 - exp [-(x/e) k  x>o (3)

e,k>o

= 0 elsewhere

3. Reliability function (1 - F(x)):

R(x) = exp [-(x/) k ] x>o (4)

e,k>o

0 0 elsewhere

The range of shapes that a graph of the Weibull density function

can take on is very broad, depending on the value of the scale para-

meter 9, and the shape parameter k. Figure I (Ref 4:31) shows three

of those curves with 6=1, corresponding to k=1/2, k=l, and k=3.

Sequential Tests of Hypotheses

Sequential tests of hypotheses differ from fixed tests in that the

sample size is a random variable. After each trial, one of three

decisions must be made:

1. Accept the null hypothesis

* !2. Reject the null hypothesis

3. Take another observation and continue testing

The decision made is based upon a probability ratio test statistic.

4As mentioned previously this testing procedure was first developed

by Wald.
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f(x)

k=2/

k =l

k=I /2

0 _x

Figure 1. Weibull Density Function for =1

In any statistical test of hypothesis, there exists three possible

results: the correct decision, a Type I error, or a Type II error.

The correct decision is when the test fails to reject the null hypo-

thesis, when it is true. A Type I error is when the test rejects the

null hypothesis, when it is true. A Type II error occurs when the test

fails to reject the null hypothesis, when the alternative hypothesis is

true. These two errors are referred to as the Alpha and Beta errors,

where Alpha is the probability of a Type I error occurring, and Beta

6



is the probability of a Type II error occurring. Alpha is sometimes

called the producer's risk, while Beta is often referred to as the con-

sumer's risk (Ref 7:48).

Wald's sequential probability ratio test considers only two cases:

1) x admits a probability density function; 2) x has a discrete dis-

tribution (Ref 28:37). In other words, for the continuous case (such

as the Weibull) the density function must be known. The three decision

regions (acceptance, rejection, continue testing) were successfully

defined by Wald, provided the test statistic is based upon a probability

ratio. Upper and lower bounds are constructed using the desired Alpha

and Beta error levels (Ref 28:40-42).

1. Upper Bound

A = (I - Beta)/Alpha (5)

2. Lower Bound

B = Beta/(l - Alpha) (6)

The decision rules are:

1. Accept H0 if Zn < B

2. Reject H 0 if Zn > A

3. Take another observation and continue testing

if B < Z < A

(note: Zn is equal to the likelihood ratio or test statistic)

7



Figure 2 is a graphical representation of the sequential probability

ratio test (Ref 7:85), in which the decision to accept H0 is made on the

eighth observation.

z
n Rejection region

A

0 n
1 2 3 4 5 6 7 8

B

Acceptance region

Figure 2. Graphical Representation of a SPRT

Sequential Tests with the Weibull Distribution

Work on SPRTs with the Weibull distribution began in the early

1970s. In 1971, Nicolae and Obreja developed a sequential test for the

two-parameter Weibull distribution with known shape parameter (Ref

20:320-331). Since that time, additional work has been done at the

Air Force Institute of Technology. In 1975, Callahan derived formulas

for determining values for the test statistic, the limits A and B, the

expected time to failure, and the expected number of failures to a

decision. His work concerned both discrete and continuous samples

for SPRTs, accelerated SPRTs, and truncated SPRTs for the two-parameter

Weibull distribution with known shape parameter (Ref 5). Williams

conducted SPRTs on the two-parameter Weibull, with known shape para-

.... ... .. 'aiR' _ . , ..,:m.,,db ... ..8



meter, to determine the effects of truncation points,(Ref 31).

Robinson developed a standardized set of SPRTs for use with the Weibull

distribution when the shape parameter is known (Ref 24). Hoffert

studied composite SPRTs for the Weibull scale parameter with the shape

parameter unknown (Ref 13). Ackerson (Ref 1) and Ballard (Ref 3) de-

veloped new SPRTs for the two-parameter Weibull distribution using

maximum likelihood estimates for the scale and shape parameters.

Antoon developed different methods to compute the variance of different

reliability estimates for systems modeled by the two-parameter Weibull

(Ref 2). Monte Carlo Analysis Techniques were used extensively in

these theses.
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III. Methodology

The objective of statistics is to make inferences about a

population based on the information contained within the sample data

(Ref 17:325). Inferences can be made by either testing hypotheses about

population parameters or by estimating the population parameters. A

statistical hypothesis is a statement about the parameters of the random

variable(s). A simple hypothesis completely describes the distribution

while a composite hypothesis does not. For example, a hypothesis of the

* 'form H: a e w is called simple if w consists of a single point, and

composite if w has more than one element (Ref 18:281,290).

The reliability of a system is defined to be the probability that

the system will still be operating under stated environmental conditions

at some specified time t (Ref 16:8). This thesis will be concerned

with this reliability based on failure rates that start from initial

component use until failure of the component.

Assunptions

1. Both the null and alternative hypotheses are simple, and of

- the form:

H1: R =R

H R R

11



2. Failure rates are best described by the two-parameter Weibull

probability density function which yields the following reliability

function:

R(t) = exp (-(t/e) k ) t>o (7)

k,e>o

= 0 elsewhere

where R is the reliability, t the time, and k and e are the shape and

scale parameters of the Weibull distribution (Ref 25:72).

3. The distribution of the estimated reliabilities is assumed to

be Normal and dependant only upon the true reliability, R, and the sample

size, n.

Generation of Random Weibull Deviates

Random Weibull deviates were generated using the CDC 6600 computer

and the International Mathematical and Statistics Library (IMSL) sub-

routine GGEXN (Ref 14), to first generate exponential deviates. The

mean and standard deviation is required as input to GGEXN. Recall that

for k equal to 1, the Weibull distribution becomes an exponential dis-

tribution with mean and standard deviation both equal to 9. Solving

equation (7) for 6k yields:

k ke = -(tk)/In R(t) (8)

This value of ek was used as input to GGEXN to create random deviates

with the hypothesized reliabilities. These deviates are then raised to

the I/k power which yields a random Weibull deviate (Ref 12:406). The

value, R(t), is referred to as the input stream (Ref 3:10). When

generating Weibull deviates, if R0 is used for R(t) the data generated

" 11



is used to test the null hypothesis (input H0 true to determine the

probability of a Type I error, Alpha). When R is used for R(t) the

data generated is used to test the alternate hypothesis (input H1 true

to determine the probability of a Type II error, Beta).

Maximum Likelihood Estimation of Weibull Parameters

The procedure used to derive the maximum likelihood estimates

(MLE), k and 6, of the Weibull shape and scale parameters, k and 8,

was developed by Harter and Moore (Ref 11). They developed a procedure

for censored or uncensored samples for the three-parameter Weibull dis-

tribution. The likelihood function for the Weibull distribution is:

n
L(x,c,e,k) II pdf (xi :c,e,k) (9)

i=1

The natural logarithm of the likelihood function is:

In L = In n! - In (n-m)! - In r! + (m-r)(In k-k in e)

m mk
+ (k-l) z In (xi-c) - z E(xi-c)/Oek

i=r+l 
i=r+l

Cn-m) [(xm-C)/O]k + r in {1 - exp [-(xi-c)/e] k} (10)

The first partial derivative of equation (10), with respect to e is:

in k k+l
Le  -k(m-r)/e + k z (xi-c)k /6 + k(n-m)

i =r+l

k/ek+l _c k k]

(xmC) / - kr (xr+1 C) exp [-(xr 1 -c) k/

/ek+l {1 - exp [-(xr+l-c)k/ek] (1)

12



The first partial derivative of equation (10), with respect to k is:

m m k
Lk = (m-r)(I/k-In e) + E In (xi-c) - Z [(xi-c)/O]

i =r+l i=r+l

In [(xi-c)/e] - (n-m) [(xmc-)/6]k In [(xm-C)/6]

+ r(.X r+l- C) k In E(xr+l-c)/e ] exp {-[(xr+l-c)/e]kI

/0k {I - exp [-(xr+l-c)kk] (12)

where the xi are the Weibull deviates, n is sample size, m is the first

order statistics of sample size n, r is the number of deviates censored

from below, and (n-m) is the number of deviates censored from above

(Ref 11). Since this thesis deals with the two-parameter Weibull dis-

tribution, as opposed to three, and there is no censoring, c=O, (n-m)=O,

and r=O. Substituting these values into equations (10), (11), and (12)

yeilds:

n
In L = In n! + n (In k-k In e) + (k-i) r In x.

i=l
n
Z (xi/e)k (13)
i=I

I n k/ k+l
L - k n/e + k Z (x0i) (14)

~i--I

n n k
m1 Lk = n/k - n In e + E In xi - E (xi/e) in (xi/6) (15)

i=l i=l

13



Equations (.14) and (15) are then set equal to zero and solved for e

and k respectively. Equation (14) set equal to zero can be solved

directly for 6 given i:

n k I/k= /nxi ) (16)

This expression is then substituted into equation (15) for e. Now,

since equation (15) set equal to zero is simply a function of the

deviates, xi's, sample size, n, and k, a root to this equation can be

approximated iteratively, using any one of a number of different

numerical methods. The method used here is the bisection method (Ref 14),

and a is reevaluated at each successive value of k.

Thoman, Baine, and Antle have provided an unbiasing factor for the

MLE of k (Ref 26). However, Petrich showed that as sample size increases,

this factor approaches one and can be neglected for samples as small as

six (Ref 22:28-30). The unbiasing factor was not used in this thesis

since the minimum sample size is ten.

Other possible methods of estimating k and 6 are the linear

regression method (Ref 21:48-50) and the method of matching moments

(Ref 23).

Once k and e have been determined, an estimate for the reliability

may be found using the formula:

R : exp [-(t/;)k t>o (17)

k ,e>o

The estimate for the reliability, R, is essential for computing the

variance and the subsequent sequential tests.

14



Determination of Variance of R by Asymptotic and Empirical Means

Empirical methods for determining the variance of point estimators

are given by Mendenhall and Scheaffer (Ref 17:269), for both biased

and unbiased estimations. In addition to this, Antoon developed a pro-

cedure for empirically computing the variance of R using a program

called FITIT (Ref 2:22-25). Ballard, in his sequential tests, uses a

cubic approximation to empirically determine the variance of R. He

also computed variances asymptotically using equations from Air Force

technical training notes (Ref 3:13-14).

In this thesis the variance of R used in the sequential testing

is computed by the Cramer-Rao Lower Bound (CRLB). Thoman, Bain, and

Antle (Ref 27) determined that R, the maximum likelihood estimator of

R, the true reliability (assuming a two-parameter Weibull distribution),

is very nearly unbiased and has a variance that is very nearly equal to

the CRLB for the variance of an unbiased estimator. The CRLB is a

function of R and n, and is given by the following formula:

= 2  2 2
CRLB R /n In R) [l.109 - .514 in (-In R) + .608 (in (- In R))2]

(18)

Here it is assumed that the CRLB is an asymptotic method for calculating

the variance of the estimated reliabilities.

Sequential Probability Ratio Tests of Reliability

Previous SPRTs of reliability at the Air Force Institute of

Technology have been conducted by Ackerson, Ballard, and Jewell. This

thesis is an attempt to extract the most successful methodologies,

along with the most recent test statistic, to provide more dependable

and accurate test plans.

15
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Ackerson formed the following test statistic based on the

likelihood ratio of R1/Ro:

Zn = In (R0/RI) + k2 _2 + 2RRI - R 2)

2 R2 a 2R

+ j2 (k2 2Ro +R0
2 ) (19)

2R 02 a 2

where R is the reliability as estimated from the samples using MLE of

k and e, found by placing k and e in equation (7). R0 is the relia-

bility under the null hypothesis and R1 is the reliability under the

alternate hypothesis. Ackerson computed the variance of thc estimated

reliabilities using sets of equations from the Air Force technical

training notes.

Ballard developed and used the following test statistic for his

sequential tests:

Zn = In (L(RI)/L(Ro)) = 2RR1 - 2RR0 + RO - R, (20)

V! 2a R

where the parameters are defined the same with the exception of the

variance calculation. Ballard computed the variance of the estimated

reliabilities using a cubic approximation generated by empirical

1means.

16



The test statistic employed in these sequential tests is formed

from the following likelihood ratio:

SR-R2
exp (- I-(2^ 1

L(RI) 1 R (1(21)

L(R0 ) 1 1 1 2
exp (- R0 )
R0  2R

R 0

This ratio is based on the normality assumption of the estimated

reliabilities. Reducing this equation and taking the natural logarithm

yields the form of the test statistic used for the SPRTs in this thesis:

22
1 (R-Ro) 1(_R I )2Z n =2 2 2- 2 in( l+ In(a ) (22)

Ro aR 1 10

where R is the reliability as estimated from samples using MLE of k

and e, R0 is the reliability under the null hypothesis and R is the

reliability under the alternate hypothesis. The variances of R, and

R are computed using the Cramer-Rao Lower Bound.

The decision boundaries for the sequential tests are developed

as follows:

B < L(R1 )/L(RO ) < A (23)

In B < ln(L(R 1 )/L(R0)) < In A (24)

17



and since

Zn = ln(L(RI)/L(R0 )) (25)

In B < Zn < In A (26)

A minimum sample size of 10, with a truncation decision occuring at

1.5 times the fixed sample size is employed for all tests in this thesis.

For a log-likelihood test, the truncation decision is to reject if

Zn > 0 and to accept if Zn < 0 at the truncation point. Figure 3 is

a graph of a typical truncated log SPRT when the minimum sample size is

10 and the test is truncated at 1.5 times the fixed sample size of 30.

Reject H0

Test Continue Testing Reject H0
Statistic ,

(Zn) n
0 --- ---- - ---. ..

Continue Testing Jccept H0

00

- ,'. Accept H0

0 5 10 15 20 25 30 35 40 45

Number of Observations

Figure 3. Truncated Log SPRT

18
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Computerization

The first step in the computerization process was to develop a

program to estimate the shape and scale parameters for the two-parameter

Weibull distribution. This program is then incorporated into the main

program, to perform the sequential testing, as a subroutine. As

mentioned previously, the subroutine to estimate the parameters uses

the bisection method to find a root to equation (15). With each increase

in sample size, new estimates for k and theta must be calculated using

this additional information. Subroutine SOLVE is called each time an

additional observation is taken and parameter estimates are needed.

From within SOLVE, subroutine EVAL is called in order to evaluate

equation (15), since this equation involves summations and summations

of logs. Values of THAT (estimate for theta) are also computed in EVAL

for each estimate of k (khat).

Complete listings for the two programs (one to estimate the alpha

error and one to estimate the beta error) are given in Appendix A.

Also illustrated in Appendix A, is a complete variable description list.

The estimate for Alpha (program one) is performed as follows:

1. Input a sequence of Weibull deviates with H0 true (line 470).

2. Run 1000 sequential-tests (Monte Carlo sample size).

3. Number of test rejections/lO00 is the estimate for alpha.

4. From the 1000 test runs, an average number of items tested to

an accept decision-H0 true (A0 ), and an average number of items tested

to a reject decision-H0 true (R0), can be calculated.

19



5. The average sample size is a weighted sum of the above mentioned

averages, calculated by:

AVESAM = e R0 + (l-c)A 0  (27)

The estimate for Beta (program two) is performed as follows:

1. Input a sequence of Weibull deviates with H1 true (line 480).

2. Run 1000 sequential tests.

3. Number of test acceptances/1000 is the estimate for beta.

4. From the 1000 test runs, an average number of items tested to

an accept decision-H l true (Al), and an average number of items tested

to a reject decision-H1 true (R1), can be calculated.

5. The average sample size is computed as follows:

AVESAM = (I-s)R1 + a A1  (28)

20



IV. Results and Recommendations

Results

Appendix B contains the computer results of the various Monte Carlo

simulations. 1000 Monte Carlo test runs are used for each case. Computer

Execution time varied between less than 1000 to over 6000 seconds, with

longer times being associated with those hypothesis tests in which the

difference in R0 and R1 was less pronounced, and the output risks are

smaller. A minimum sample size of 10 is used for each test with the

exception of indicated departures during sensitivity analysis.

Table B-l shows the sequential test results for testing the null

hypothesis Ho:Ro=.9 against the three alternatives H1 :Rl=.854, Hl:Rl=.81,

and Hl:Rl=.729. Three desired (input) alpha and beta risk level pairs

are used for each hypothesis test, (.1, .1), (.2, .2), and (.1, .2). The

criterion used to judge the "goodness" of the test plans is how close

the actual alpha and beta errors are in relation to the designed alpha

and beta output risks. Comparing the results here with those obtained

by Ballard shows noticeable improvement, especially in those cases

concerning alternate reliabilities of .81 and .729.

Sensitivity analysis was conducted to determine the effect of

changes in the minimum sample size and truncation point. One test case

was selected in which the minimum sample size was changed from 10 to 15

(Computer resources prevented the selection of additional cases to

perform sensitivity analysis on). Table B-2 indicates that this change

had a minimal effect on the test plans. There is only minor variation

in the a and a levels accompanied by a small change in corresponding

21



sample sizes. Also shown in Table B-2 is a change in the truncation point.

Here the minimum sample size was returned to 10, and the truncation point

was moved from 1.5 to 2.0 times the fixed sample test size. Again it is

noted that this change had only a minor effect on the test plans.

To further balance the a and s levels, the boundaries of the test

region can be shifted. Results in Table B-l show good reason to shift

since the alpha errors are consistently below design, while the beta

errors are consistently above design. Rather than shifting the boundaries,

it is much easier to make a shift in the test statistic to allow movement

into the desired test region. In this case a positive shift is required

in order to raise the alpha error and lower the beta error to more

closely resemble the design, and thereby accomplish a balance.

The test of hypothesis H0 :R0 =.9 versus the alternative Hl:R1 =.81

was selected to perform these shifts on (again computer resources pre-

vented the selection of additional cases). The three pairs of a and S

risk levels were tested using various shifts in the test statistic.

Table B-3 shows the results of these shifts. These results are consistent

with theory in that, as the shift increases, the alpha level increases,

while the beta error decreases. This was the anticipated and desired

result.

Once the output risks have been balanced, they can be raised or

lowered by changing the design (input) risks. In this case the output

risks, after balancing, were above the desired a and a levels. Table

. B-4 shows the results of a shift in the test statistic, along with input

risk levels designed to bring about the desired results. The input a

and s levels are well below those which are desired.
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Recommendations

Future research in this area should concern the development of a

test statistic that would require no shifting or balancing. Other

methods for estimating the variance for the estimated reliabilities may

be developed. Estimates for the parameters k and e, may be accomplished

using the linear regression method or the method of matching moments,

rather than the Maximum Likelihood method. Different Alpha and Beta

risk levels might prove to be a worthwhile area of investigation. In

addition to this, different tests of hypotheses might be developed in

order to extend these test plans.
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Appendix A

Computer Programs

Program one Performs sequential tests of hypothesis concerning system
reliabilities to estimate the Alpha error.

Program two Performs sequential tests of hypothesis concerning system
reliabilities to estimate the Beta error.

Note: The IMSL Library must be attached

Variable Descriptions

ACCEPT - number of test accept decisions

ACCSAM - accept decision sample size

AHAT - estimate for Alpha

ALPHA - input Alpha error probability

ANOT - average number of items tested to an accept decision

AVESAM - average sample size

BACK - last section of equation (15)

BETA - input Beta error probability

BHAT - estimate for Beta

DSEED - seed for random number generator

FIXN - fixed sample size

FXL - equation (15) evaluated at the left bound

FXR - equation (15) evaluated at the right bound

ITER - number of iterations (bisection method)

K - actual value of k used in generation of Weibull deviates

KHAT - estimated value of k

L - Monte Carlo repetitions

LB - lower boundary for the sequential tests
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LCOUNT number of truncation decisions

LK - evaluation of equation (15)

MIN - minimum sample size

N - sample size (current)

NN - number of deviates to be generated in GGEXN

NTRUN - truncation point for sequential tests

R(I) - exponential random deviate

RO - reliability under the null hypothesis

Rl - reliability under the alternate hypothesis

REJECT - number of test reject decisions

REJSAM - reject decision sample size

RHAT - estimated value of reliability

RNOT - average number of items tested to a reject decision

STDRO - standard deviation of O

STDRI - standard deviation of R1

SUMX - sum of the Weibull deviates

SUMLX - sum of natural logarithms of Weibull deviates

T - value of time for current run

THAT - estimate for theta

TOL - tolerance for bisection estimation

UB upper boundary for the sequential tests

i VARRO variance of R

VARRO - variance of RlI

X(I) - random Weibull deviates

XL left bound for bisection routine

XM mean and standard deviation for use in random number generator
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XR - right bound for bisection routine

ZN - test statistic

3
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Program One

PLO.CM65000.T300O. T810332,LUSSIER,4462
ATTACH, IMSL. ID:LIBRARY, SNzASD.
LIBRARY4 INSL.
FTN5, ANS 120.

lEOR
C
C THIS PROGRAM PERFORMS A SEQUENTIAL TEST TO ESTIMATE
C THE ALPHA ERROR. HO IS INPUT AS THE TRUE CONDITION
C OF RELIABILITY, AND ALPHA IS ESTIMATED.

PROGRAM SEQ
DOUBLE PRECISION DSEED
DIMENSION X(300),R(5)
REAL K,KHAT,LD
DATA RO ,RI.FIXN,ALPHABETA.MIN,L/.9,,729,14.,.b,.21 10,IOOO/
PRINTt, RO,Rl,FIXN,ALPHA,9ETA,MIN,L

KsI.I DSEED:4462. DO
NTRUN'1.5tFIM
NNa1

CVC UPPER AND LOWER BOUNDARIES FOR THE SEQUENTIAL TESTS
C

UBxLOS ((1.-BETA) /ALPHA)
L9=LOG(BETA/(1.-ALPHA))

C
LCOUNTzO
ACCEPTzO.
REJECT:O.
ACCSA"20.
REJSAM:O.

C CALCULATION OF MEAN AND STANDARD DEYIAION TO BE
C USED AS INPUT TO GBEXN
C

X*- ( TItK)/LOG (RO)
C
C MONTE CARLO LOOP OF L REPETITIONS
C

DO 200 Isl,L
Mao

440 CALL G5EXN(DSEED,XM,NN.R)
NxN+1

C GENERATE MIN WEIBULL DEVIATES

C

CALL SOLVE(,KAT.THAT, ITER.N
IF(ITER.GE.40)GO TO 40
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C ESTIMATE THE RELIABILITY
C

RHATSEXP(-( CT/THAT) SIKHAT))

C VARIANCE AS ESTIMATED BY THE CRAMER-RAO LOWER BOUND
C

VARRON(ROR:2 C(LOSCR0) 1*2)(1. 109-. 5141 CLOG(-LOG(RO)) +. 608C (LOS
C(-LOG(RO)))$82))IN
VARR1:(R1U$2)CLOG(R1)I*2)3(1.109-.514*(L06(-LG(Rln))+.6o8su(LO6

C C(-L06(RI)))182))IN

STDROaVARROU .S
STDRlxVARR1$t.5

C
C CALCULATE THE TEST STATISTIC AND PERFORM THE SEQUENTIAL TESTS
C

ZNz((RHAT-RO)*12)/(2IVARRO)-((RHAT-R1)$12)/(2VARRI)-LO(STDRI),
CLOS(CSTDRO)
IF(N.6E.NTRUN) 00 TO 45
GO TO 46

45 LCOUNTaLCOUNT+1
IF(ZN.ST.O. iSO TO 48
IF(ZN.LT.O.)60 TO 47

46 IF(ZN.LT.LB)60 TO 47
IF(ZN.GT.UB)GO TO 48
GO TO 40

47 ACCEPTzACCEPT.1
ACCSAM=ACCSAM+N
60 TO 50

48 REJECT:-REJECT,1
REJSAMaREJSAM+N

C
C INTERMEDIATE RESULTS
C
50 IF(I.Eg.L/S)THEN

AHATzREJECT/ I
ANOTsACCSAM/ACCEPT
RNO72REJSAM/REJECT
AVESA~sAHATtRNOT. Cl. -AHAT)lANOT
PRINT$,'HO: Rz ',RO
PRINT$,'HI: Rz ',Rl
PRINT$,'INPUT ALPHA,BETA a',ALPHA,',',BETA
PRINTI,'INPUT HO TRUE'
PRINTI,'MONTE CARLO SAMPLE SIZE ",I
PRINT$ .'NUMBER REJECTx ',REJECT
PRINTS,'NUMDER ACCEPTs ',ACCEPT
PRINTS,'TEST ALPHA ',AHAT
PRINTWAVE. NO. ITEMS TESTED TO AN ACCEPT DECISIONx ',ANOT
PRINTWAVE. NO. ITEPS TESTED TO A REJECT DECISIONs ',RNOT
PRINTS, 'AVE. SAMPLE SIZEs ',AVESAM
PRINT$ "NO. OF TRUNCATION DECISIONS ',LCOUNT
ENDIF
IF(I.EG.L/2) THEN
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AkATvREJECT/I
ANOTACCSAM/ACCEPT
RNOT'REJSAM/REJECT
AVESAfluAHATtRNOT.(I.-AHAT) tANOT
PRINTtHO: Ra ',RO
PRINTWH1: Ra ',R1
PRINTI,'INPUT ALPHA,BETA 2',ALPHA.',',BETA
PRINTt,'INPUT HO TRUE'
PRINTI,'MONTE CARLO SAMPLE SIZE ',I
PR!NTS,'NUMBER REJECTs ',REJECT
PRINTI,'NUMDER ACCEPTx ',ACCEPT
PRINTS,'TEST ALPHA ',AHAT
PRINTt.'AYE. NO. ITEMS TESTED TO AN ACCEPT DECISION' ',ANOT
PRINTW.AVE. NO. ITEMS TESTED TO A REJECT DECISION= ',RNOT
PRINTI,'AVE. SAMPLE SIZE' '.,AVESAM
PRINTt.'NO. OF TRUNCATION DECISIONS ',LCOUNT
ENDIF

2OO CONTINUE
AHATzREJECTIL
ANOTzACCSAM/ACCEPT
RNOT'REJ SAM/REJECT
AVE SAMxAHATlRNOT+0(. -AHAT) RANOT
PRINT,'HO: R' ',RO
PRINTt,'Hl: Ru '. Rl
PRINTt,'INPUT ALPHA,BETA x ',ALPHA,',',BETA
PRINTI,'INPUT HO TRUE'
PRINT9,'MONTE CARLO SAMPLE SIZE ',L
PRINTI,'NUMBER REJECTz ',REJECT
PRINTI,'NUMBER ACCEPT' ',ACCEPT
PRINTt,'TEST ALPHA ',AHAT
PRINTI,'AVE. NO. ITEMS TESTED TO AN ACCEPT DECISION= ',.ANOT
PRINT$!"AYE. NO. ITEMS TESTED TO A REJECT DECISION' ',RNOT
PRINTI,'AYE. SAMPLE SIZEs ',AVESAM
PRINTI,'NO. OF TRUNCATION DECISIONS ',LCOUNT
STOP
END
SUBROUTINE SOLVElX.KHAT,THAT,ITER,,N)

C SUBROUTINE TO ESTIMATE THE SHAPE(KHAT) AND SCALE
C (THAT) PARAMETERS OF THE TWO-PARAMETER WEIBULL
C DISTRIBUTION, USING THE BISECTION METHOD, EVAL

C IS CALLED IN ORDER TO EVALUATE THE EQUATION TO
C WHICH A ROOT IS REQUIRED.
C

REAL KHAT
TOLz.OOOO1
ITER'O
XL'O.1
XRx5.O
KHATzXL
CALL EVAL(X.KHATIL,XR,FXL.FIR,THAT.N)
KHATcXR
CALL EYAL(X.KHAT.XL,XR.FXL.FXR,THAT,N)

25 IF(FXLIFXPR 30,100,35
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30 IF(XR-XL.LT.2.lTOL) 6O Ta 100
IF(ITER.GE.40)6O TO 100
TENPzXL
XLxIXL+XR)/2
K HA TzEL
CALL EYAL(XE.KHAT,XL,XRFXL.FIR.THAT,N)
ITERzITER+1

K6 5TO025

XL: TEMP
ELa XL+XR) /2

* KHATzXL
CALL EVAL(X,KHAT,XL.IR,FXLS.FXR,THAT.N)
ITER 2 ITER+l
60 TO 25

100 KHATs(XL+XR)/2
CALL EVAL(X,KHATE.XL,XR,.FXL.FXR,THAT,N)

* RETURN
END

C
C SUBROUTINE TO EVALUATE EQUATION (133. ROOT TO
C THIS EQUATION GIVES AN ESTIMATE FOR K. THIS
C EQUATION REPRESENTS THE FIRST PARTIAL DERIVATIVE
C OF THE LOS-LIKELIHOOD FUNCTION WITH RESPECT TO K
C FOR THE TWO-PARAMETER WIEDULL DISTRIBUTION.
C

SUBROUTINE EA.~ALXXXh1N
REAL X(300),KHAT,LK
SUMXv0.
SUML~zO.
BAC0u0.
DO 50 I:1,N
SUMX2SUMX+I (I)ltKHAT
SUMLIzSUMLX+LOG(X(l))
THATz(SUMX/I)18(1/KHAT)
BACKaBACK.((X(I)/THAT)ISKHAT)3LO(X(I)/THAT)
LKxI/KHAT-I *LOG (THAT) +SUMLX-BACK

50 CONTINUE) IF (KHAT. EQ. XL) FXLELK
IF(KHAT. EQ. XR)FXRuLK
RETURNII END

3)SE______
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Program Two

PLI,CM65OOO,T600O. T610332,LUSSIER,4462
ATTACH, IMSL, IDRLIBRARY,SNsASD.
LIBRARY, IMSL.
FTN5,ANSI*0.

SEOR
PROGRAM SEQ

C

C THIS PROGRAM PERFORMS A SEQUENTIAL TEST TO
C ESTIMATE THE BETA ERROR. H1 IS INPUT AS THE
C TRUE CONDITION OF RELIABILITY, AND BETA IS
C ESTIMATED.
C

DOUBLE PRECISION DSEED
DIMENSION X(300),R(5)
REAL K,KHAT,LB
READ*,RO,RI ,FIXN,ALPHA,BETA,MIN,L
PRINTS, R0,RIFIXN.ALPHA,BETA..MIN.L
K21.

DSEEDx4462. DO
NTRUNxi.51FIXN

C UPPER AND LOWER BOUNDARIES FOR THE SEQUENTIAL TESTS
C

UBaLOG ((1.-BETA) IALPHA)
L~sLOG(BETA/ (1.-ALPHA))

C
LCOUNTxO
ACCEPTs0.
REJECT*O.
ACCSANu0.
REJSAMx.

C
C CALCULATION OF MEAN AND STANDARD DEVIATION TO BE
C USED AS INPUT TO GGEXN
C

XRu-fTllK) fLOG(RI)
C
C MONTE CARLO LOOP OF L REPETITIONS
C

D0 200 Im1,L
NuC

40 CALL 6BEXN(DSEED,XM,NN,R)
NsH#I

C
C GENERATE MIR 1EIBULL DEVIATES
C

IF(N.LT.MIR) 60 TO 40
CALL SOLVE(I,KHAT,THAT, ITER.N)
IF(ITER.GE.40)GO TO 40
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C ESTIMATE THE RELIABILITY
C

RHATxEXP(-((T/THAT :SKHAT))
C
C VARIANCE AS ESTIMATED BY THE CRAMER-RAO LOWER BOUND
C

VARRO(ROS2$LO6(ROhsS2:U(.1O9-.514s(LO6-L0G(RO))).bO8s1LO6
C(-LOG(RO)))112))/N
VARRI'(R18$2)S(LG(R)122)S(1.109-.514$(L6(-LO(R))I)+.6085( (LOG
C(-LO6(Ri))) *82) /N
STDROnVARROSS.5
STDR19YARRitt.5

C CALCULATE THE TEST STATISTIC AND PERFORM THE SEQUENTIAL TEST

ZNu((RHAT-ROI*821/(2:VARRO)-c(RHAT-R1)n$2)/(2VARRI-LO6(STDRI.
CLOG (STDROI
IF(N.GE.NTRUN) 60 TO 45
60 TO 46

45 LCOUNTzLCOUNTeI
IF(ZN.GT,.0 TO 49
IFCZN.LT.O.)GO TO 47

46 IF(ZN.LT.LBIGO TO 47
IF(ZN.GT.UB)GO TO 48
60 TO 40

47 ACCEPTaAECEP1.I1
ACCSAMzACCSAM.N
GO TO 50

49 REJECTaREJECT+1
REJSA~xREJSAM+N

C
C INTERMEDIATE RESULTS
C
50 IF(I.EG.L/5)THEN

BHATmACCEPT/ I
ANOTsACCSAM/ACCEPT
RNOT2REJ SAM/REJECT
AVESAMz(l.-BHATISRNOT.BHATlANOT
PRINTS,'HOt Rx ',RO
PRINT19'HIt Ra ',R1
PRINTS,' INPUT ALPHA.BETA x ',ALPHA,' ,',BETA
PRINTI,'INPUT HI TRUE'

;1j PRINTI,'MONTE CARLO SAMPLE SIZE ',I
PRINTS,'NUIER REJECT* ',REJECT
PRINT$,'NUNDER ACCEPT. ',ACCEPT
PRINTS,'TEST DETA',DHAT
PRINTI,'AYE. NO. ITEMS TESTED TO AN ACCEPT DECISIONs ',ANOT
PRINTS,'AYE. NO. ITEMS TESTED TO A REJECT DECISIONs ',RNOT
PRINT$,'AYE. SAMPLE SIZEm ',AVESAM
PRINT1,'NO. OF TRUNCATION DECISIONS ',LCOUNT
ENDIF
IF(I.Eg.L/2) THEN
BHATsACCEPT/ I



ANOTsACCSAMIACCEPT
RNOTzREJSAMIREJECT
AYESAN. (1. -BAT) SRNOT.BHAflANOT
PRINTWHOi Ru ',Ro
PRINTt,'HII Ra ',R1
PRINTS,' INPUT ALPHA,BETA a ',ALPHA.',',BETA
PRINTt,'INPUT HI TRUE'
PRINTSS'MONTE CARLO SAMPLE SIZE ',I
PRINTI,'NUMBER REJECTs ',REJECT
PRINTS,'NUMDER ACCEPTs ',ACCEPT
PRINTI,'TEST DETA',BHAT
PRINTS,'AYE. NO. ITEMS TESTED TO AN ACCEPT DECISIONa ',ANOT
PRINTI,'AVE. NO. ITEMS TESTED TO A REJECT DECISION: ',RNOT
PRINTt,'AVE, SAMPLE SIZE= ',AVESAM
PRINTt,'NO. OF TRUNCATION DECISIONS ',LCOUNT
END IF

200 CONTINUE
C
C FINAL RESULTS
C

BHAT:ACCEPT/L
ANGTxACCSAR/ACCEPT
RNCT*REJSAM/REJECT
AVESAflx(I. -BNAT) IRNOT4BHAT*ANOT
PRINTt,'HO: R2 ',RO
PRINTS,'Hii R2 ',Rl
PRINT9,'INPUT ALPHABETA z ',ALPHA,',',BETA
PRINT8,'INPUT Hi TRUE'
PRINTt,'MONTE CARLO SAMPLE SIZE ',L
PRINTI,'NUMDER REJECTs ',REJECT
PRINTI,'NUMBER ACCEPT2 ',ACCEPT
PRINTS. TEST BETA',BHAT
PRINTI,'AVE. NO. ITEMS TESTED TO AN ACCEPT DECISIONx ',ANOT
PRINTI,'AVE. NO. ITEMS TESTED TO A REJECT DECISION. ',RNOT
PRINTS, 'AVE, SAMPLE SIZE. I',AVESAM
PRINTt,'NO. OF TRUNCATION DECISIONS ',LCOUNT
STOP
END
SUBROUTINE SOLVE(X,KHAT,THAT, ITER,N)

C SUBROUTINE TO ESTIMATE THE SHAPE(KHAT) AND SCALE
C (THAT) PARAMETERS OF THE TWO-PARAMETER WEIBULL
C DISTRIBUTION, USING THE BISECTION METHOD. EVAL
C IS CALLED IN ORDER TO EVALUATE THE EQUATION TO
C WHICH A ROOT IS REQUIRED.

REAL KNAT
TOL.00001
ITfRs0
XLmO.1
Xoss,0
KHATsXL
CALL EVALIX,KHAT,XL,1R,FSLFXR,THAT,N)
KHATsIR
CALL EVAL(X,KHAT,XL,XR,FXL.FXR,THAT,N)
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25 IF(FXLIFXR) 30,100,35
30 IF(XR-XL.LT.2.lTOL) Ga TO 100

IF(ITER.GE.40)GO TO 100
TEMPnXL
KNXLXIR/
KWA ( XL.I)/
CALL EVAI (, KNAT,XL, XR, FXL,FIR, THAT, N)
ITERaITERiI
GO TO 25

35 XRaXL
XL*TEMP
XLn(XL+XR) /2
K HATa XL
CALL EVAL(X,KHAT,XL,IR,FXL,FXR.THAT,N)
ITER a ITER.!
SO TO 25

100 KHAT:(XL+XR)/2
CALL EVAL(XXHAT, XL,XR,FIL,FXRITHAT,M)
RETURN
END
SUBROUTINE EVAL(I,KHAT, XL,XR,FXL,FXRI THAT,N)

C
C SUBROUTINE TO EVALUATE EQUATION (15). ROOT TO
C THIS EQUATION GIVES AN ESTINTE FOR K. THIS
C EQUATION REPRESENTS THE FIRST PARTIAL DERIVATIVE
C OF THE LOG-LIKELIHOOD FUNCTION WITH RESPECT TO
C X FOR THE TWO-PARAMETER WEIDULL DISTRIDUTION.
C

REAL X(300),XHAT,LX
SU"Xs0.
SUMLI:0.
BACK8O.
00 50 121,N
SUMXxSUHX+X (I)SIKHAT
SUNLXsSUNLX.LOG(I (I))
THAT2(SUNX/I) IS(1/KHAT)
BACX:BACK+((X(i)/THAT)I*KHAT)SLOGIX(I)/THAT)
LKsI/KHAT-IRLOG (THAT) +SUNLX-DACK

50 CONTINUE
IF(KHAT.Eg. XL) FXLxLK
IF(KHAT.EG. XR)FXRNLX
RE TURN
END
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Appendix B

Tables

A0  Average number of samples to accept H0 when H0 is true

R0  Average number of samples to reject H0 when H0 is true

A, Average number of samples to accept H0 when H1 is true

R Average number of samples to reject H0 when HI is true

AVG Sample Size - Weighted average of A0 and R0 or A1 and R1
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